Accessibility Tools

  • Increase text
  • Decrease text
  • High contrast
  • Negative contrast
  • Add grayscale
  • Remove grayscale
  • Add lightbackground
  • Remove lightbackground
  • Reset
Created on LEED Interpretation

ID#

li-1838

Credit NameIDc1 - Innovation in design
Credit CategoryInnovation
International ApplicableYes
Campus ApplicableNo

Rating System

LEED BD+C: New Construction, LEED ID+C: Commercial Interiors, LEED BD+C: Core and Shell, LEED BD+C: Schools

Rating System Version

v3 - LEED 2009, v2 - Schools 2007, v2 - LEED 2.2, v2 - LEED 2.0

Inquiry

We are seeking an Innovation in Design credit for implementing a comprehensive water filtration system that will reduce occupants\' exposure to contaminants generally present in tap water. In the same way that Indoor Environmental Quality credits address the reduction of airborne contaminants found in building interiors, this system addresses waterborne contaminants that are commonly found in local water supplies. This system also obviates the need for occupants to purchase bottled water products, which can help reduce the over 60 million plastic bottles that are discarded everyday in the United States. The system we are considering combines an extremely water-efficient building-wide first stage water filter that removes 100% of particulates 10 microns or larger and approximately 50% of particulates smaller than 10 microns, with a secondary stage consisting of individual "point-of-use" filters in the apartment kitchens. The point-of-use filters use a multi-stage filtration system that includes pulverized activated carbon which significantly reduces organic chemicals and a membrane that removes particulates 0.5 micron and larger. By preventing particles larger than 10 microns from ever reaching the .5 micron kitchen filters, the primary filtration system significantly extends the effective life of the secondary filters (approximately a 300% increase in filtration cartridge longevity), thus reducing maintenance and ensuring a higher flow rate and quality of water. The secondary system has been tested and certified by NSF/ANSI to reduce VOCs and trihalomethanes (THMs) which the EPA classifies as a "probable human carcinogen," by 99.86 percent. Trihalomethanes are the byproduct of municipality-introduced chlorine interacting with organic material in the source water. It also has been shown to reduce cysts, such as Cryptosporidium, by 99.99 percent. A 1993 Milwaukee outbreak of Cryptosporidium left 400,000 ill and 70 dead. This is likely to become more important since water borne disease is seen as a probable consequence of the increasing hydrologic events and flooding caused by climate change. The following list of contaminant reductions has been certified by NSF/ANSI (42 & 53): - Chlorine: Avg. Reduction-96.8% - Volatile Organic Chemicals, including Trihalomethanes (THMs): Avg. Reduction-99.86% -Asbestos fibers >10 micrometers in length: Avg. Reduction-99.86% -Cysts: Avg. Reduction-99.99% -Chloroform (VOC surrogate chemical): 98.6% This combined filtration system improves occupant health and reduces the amount of resources typically required to achieve this level of water purity. Therefore, it should be eligible for an innovation point. Suggested Credit Title: Comprehensive Drinking Water Filtration Intent: Reduce the exposure to potentially harmful waterborne contaminants. Requirements: Provide building-wide water filtration that removes particulate contamination equal to or smaller than 10 microns AND Provide point-of-use water filtration that is NSF/ANSI tested to reduce Chlorine, VOCs, Asbestos fibers, Cysts and Chloroform by at least 95%.

Logging out the application..