Accessibility Tools

  • Increase text
  • Decrease text
  • High contrast
  • Negative contrast
  • Add grayscale
  • Remove grayscale
  • Add lightbackground
  • Remove lightbackground
  • Reset
Created on LEED Interpretation

ID#

li-2591

Credit NameEAc2.1-2.3 - Renewable energy
Credit CategoryEnergy & atmosphere
International ApplicableYes
Campus ApplicableNo

Rating System

LEED BD+C: New Construction, LEED BD+C: Core and Shell, LEED BD+C: Schools

Rating System Version

v3 - LEED 2009, v2 - Schools 2007, v2 - LEED 2.2, v2 - LEED 2.1, v2 - LEED 2.0

Inquiry

Cold Climate Housing Research Center (CCHRC) is using a high quality wood-burning masonry heater to provide about 10% of its building\'s annual energy budget, directly as heat. Remaining heat is provided by an oil-fired hydronic system, supplemented by solar thermal collectors. We are requesting approval of this masonry heater as a renewable heat source for both EA-1x Energy Optimization and EA-2.3 Renewable Energy on the following grounds: The masonry heater serves as an element of research, training and demonstration for clean and renewable wood heat. The masonry heater is used and managed as part of CCHRC\'s research mission and building operations. It is monitored regularly for temperature, weight of wood input and weight of ash output. The masonry heater is fueled once per business day when heating is required. It provides significant heat for the 2 story east end of the building from its location near an open stairway in the building\'s lobby. Wood used at this facility is sustainably harvested in local woodland and grounds management. Firewood is supplied by CCHRC\'s land owner, University of Alaska Fairbanks, from its maintenance and construction clearing operations. In addition, firewood may be cut on nearby designated, managed State land areas after a permit is obtained: http://forestry.alaska.gov/wood/firewood.html Plentiful, regulated forest land areas near this site make firewood a renewable, local energy source which will be available for the life of the building. The standard \'Envirotech\' masonry heater core ( http://www.timelyconstruction.com/index.htm ) has been tested for particulate emissions by Myren Consulting, Inc., an accredited third party testing agency. Average particulate grams per kg. of wood: ASTM Standard Crib Fuel; 0.8193 g/kg., Cord wood: 0.8155 g/kg. These values meet or exceed those for allowable wood pellet stoves, relieving concerns that incomplete or poor combustion can produce pollution; expressed on page 154 of the Version 2.1 Reference Guide. Masonry heaters also have a burn-efficiency similar to that of oil-fired boilers. Most oil-fired boilers can be set to burn at 85-87% efficiency maximum due to the problems inherent in managing oil-emission condensate that occurs when oil is burned at a higher efficiency rate. Masonry heaters similarly burn the wood at around 85% efficiency. However, CCHRC\'s masonry heater is fired only once per day instead of running continuously through the day. Also, data that we have on PM2.5 emissions clearly shows that masonry heaters contribute fewer PM2.5 emissions to the atmosphere than oil-fired boilers. Furthermore, because the Masonry Heater burns so effectively, CCHRC uses less than 2 cords of wood per year. Masonry heaters are approved under LEED for Homes with where potential for \'backdraft\' is minimized and has been documented. The masonry heater in this building meets these requirements. In addition, atmospheric pressure inside the building is monitored by the building automation system, which can notify the building manager in the unlikely event that significant negative pressure occurs. In conclusion, we believe the masonry heater should be credited for this project because its fuel is renewable & low in embodied energy, its particulate emissions are lower than the oil boilers, and its use is carefully measured & managed. It benefits the environment by lowering fossil fuel consumption and carbon footprint.

Logging out the application..